
Module 4 
Software Security 

Submodule	3:	Secure	Programming	

CSCI	4391	Cyber	Attacks	and	Defense		 1	



Importance of Secure Software 
• Many	computer	security	vulnerabilities	result	from	
poor	programming	practices.	

• Poor	programming	practices	generate	software	
errors,	which	are	the	main	cause	of	the	majority	of	
cyber	attacks.	The	errors	can	be	categorized	into:	

•  Insecure	interaction	between	components	
•  Risky	resource	management	
•  Porous	defenses	

CSCI	4391	Cyber	Attacks	and	Defense		 2	



Insecure Interaction Between Components 

•  Improper	Neutralization	of	Special	Elements	used	
in	an	SQL	Command	(“SQL	Injection”)		

•  Improper	Neutralization	of	Special	Elements	used	
in	an	OS	Command	(“OS	Command	Injection”)	

•  Improper	Neutralization	of	Input	During	Web	Page	
Generation	(“Cross-site	Scripting”)		

• Unrestricted	Upload	of	File	with	Dangerous	Type	
Cross-Site	Request	Forgery	(CSRF)		

• URL	Redirection	to	Untrusted	Site	(“Open	
Redirect”)	

CSCI	4391	Cyber	Attacks	and	Defense		 3	



Risky Resource Management 
• Buffer	Copy	without	Checking	Size	of	Input	(“Classic	
Buffer	Overflow”)		

•  Improper	Limitation	of	a	Pathname	to	a	Restricted	
Directory	(“Path	Traversal”)		

• Download	of	Code	Without	Integrity	Check	
•  Inclusion	of	Functionality	from	Untrusted	Control	
Sphere		

• Use	of	Potentially	Dangerous	Function		
•  Incorrect	Calculation	of	Buffer	Size		
• Uncontrolled	Format	String	Integer		
• Overflow	or	Wraparound	

CSCI	4391	Cyber	Attacks	and	Defense		 4	



Porous Defenses-I 
• Missing	Authentication	for	Critical	Function		
• Missing	Authorization		
• Use	of	Hard-coded	Credentials		
• Missing	Encryption	of	Sensitive	Data		
• Reliance	on	Untrusted	Inputs	in	a	Security	Decision	

CSCI	4391	Cyber	Attacks	and	Defense		 5	



Porous Defenses-II 
•  Execution	with	Unnecessary	Privileges		
•  Incorrect	Authorization		
•  Incorrect	Permission		
• Assignment	for	Critical	Resource	Use	of	a	Broken	or	
Risky	Cryptographic	Algorithm		

•  Improper	Restriction	of	Excessive	Authentication	
Attempts		

• Use	of	a	One-Way	Hash	without	a	Salt	

CSCI	4391	Cyber	Attacks	and	Defense		 6	



Reduce Software Vulnerabilities 
•  The	NIST	report	NISTIR	8151	(Dramatically	
Reducing	Software	Vulnerabilities,	October	2016)	
presents	a	range	of	approaches	with	the	aim	of	
dramatically	reducing	the	number	of	software	
vulnerabilities:	

•  Stopping	vulnerabilities	before	they	occur	by	using	
improved	methods	for	specifying	and	building	software.	

•  Finding	vulnerabilities	before	they	can	be	exploited	by	
using	better	and	more	efficient	testing	techniques.	

•  Reducing	the	impact	of	vulnerabilities	by	building	more	
resilient	architectures.	

CSCI	4391	Cyber	Attacks	and	Defense		 7	



Quality and Reliability 
•  Software	quality	and	reliability:	

•  Concerned	with	the	accidental	failure	of	program	as	a	
result	of	some	theoretically	random,	unanticipated	
input,	system	interaction,	or	use	of	incorrect	code—
supposed	to	follow	some	probability	distribution	

•  Can	be	improved	using	structured	design	and	testing	to	
identify	and	eliminate	as	many	bugs	as	possible	from	a	
program	

CSCI	4391	Cyber	Attacks	and	Defense		 8	



Software Security 
•  It	is	a	concept	that	is	related	to	quality	and	
reliability,	but	different:	

•  Attacker	chooses	probability	distribution,	specifically	
targeting	bugs	that	result	in	a	failure	that	can	be	
exploited	by	the	attacker	

•  Triggered	by	inputs	that	differ	dramatically	from	what	is	
usually	expected	

•  Unlikely	to	be	identified	by	common	testing	approaches	

CSCI	4391	Cyber	Attacks	and	Defense		 9	



Secure (Defensive) Programming 
• Cover	all	the	bases,	assume	nothing:	

•  Designing	and	implementing	software	so	that	it	
continues	to	function	even	when	under	attack	

•  Requires	attention	to	all	aspects	of	program	execution,	
environment,	and	type	of	data	it	processes	

•  Software	is	able	to	detect	erroneous	conditions	
resulting	from	some	attack	

•  Key	rule	is	to	never	assume	anything,	check	all	
assumptions	and	handle	any	possible	error	states	

CSCI	4391	Cyber	Attacks	and	Defense		 10	



Mindset Change Needed 
• Conventionally,	programmers	focus	on	the	
“problem-solving”	part—attention	is	focused	on	
getting	things	done.		

•  There	will	be	pressure	from	business	side	to	
shorted	the	time-to-market,	which	leaves	little	
time	to	be	concerned	with	the	security	of	the	code.	

• What	need	to	be	changed?	
•  Programmers	have	to	understand	how	failures	can	
occur	and	the	steps	needed	to	reduce	the	change	of	
them	occurring	in	their	program	

•  Programmers	need	to	realize	all	assumptions	need	to	be	
validated	by	the	program	and	all	potential	failures	
handled	

CSCI	4391	Cyber	Attacks	and	Defense		 11	



Security by Design 
•  Security	and	reliability	are	common	design	goals	in	
most	engineering	disciplines	such	as	architecture	

•  Software	development	has	not	reached	the	similar	
maturity	level	

• Recent	years	have	seen	increasing	efforts	to	
improve	secure	software	development	processes:	

•  Software	Assurance	Forum	for	Excellence	in	Code	
(SAFECode):	

•  Develop	publications	outlining	industry	best	practices	for	
software	assurance	and	providing	practical	advice	for	
implementing	proven	methods	for	secure	software	
development	

CSCI	4391	Cyber	Attacks	and	Defense		 12	



Handling Program Input 
•  Incorrect handling of program input is one of 

the most common failings in software security. 
• What	constitutes	input?	

•  any	source	of	data	that	originates	outside	the	program	
and	whose	value	is	not	explicitly	known	by	the	
programmer	when	the	code	was	written	

• What	are	the	good	practices:	
•  Identify	all	data	sources:	keyboard/mouse	entry,	files,	
network	connections,	data	supplied	to	the	program	
during	execution	

•  Identify	all	assumptions	about	the	size	and	type	of	the	
values	the	input	data	take	

•  Be	concerned	with	the	meaning	and	interpretation	of	
the	input	

	
CSCI	4391	Cyber	Attacks	and	Defense		 13	



Issues with Input Size 
• Programmers	often	make	assumptions	about	the	
maximum	expected	size	of	input	

•  Allocated	buffer	size	is	not	confirmed	
•  Resulting	in	buffer	overflow		

•  Testing	may	not	identify	vulnerability	
•  Test	inputs	are	unlikely	to	include	large	enough	inputs	
to	trigger	the	overflow	

•  Safe	coding	treats	all	input	as	dangerous	

CSCI	4391	Cyber	Attacks	and	Defense		 14	



Issues with Interpretation of Input 
•  Program	input	may	be	binary	or	text	

•  Binary	interpretation	depends	on	encoding	and	is	usually	
application	specific	

•  There	is	an	increasing	variety	of	character	sets	being	
used	

•  Care	is	needed	to	identify	just	which	set	is	being	used	and	
what	characters	are	being	read	

•  Failure	to	validate	may	result	in	an	exploitable	
vulnerability	

•  2014	Heartbleed	OpenSSL	bug	is	a	recent		example	of	a	
failure	to	check	the	validity	of	a	binary	input	value	

CSCI	4391	Cyber	Attacks	and	Defense		 15	



Injection Attacks 
•  Flaws	relating	to	invalid	handling	of	input	data,	
specifically	when	program	input	data	can	
accidentally	or	deliberately	influence	the	flow	of	
execution	of	the	program	

• Most	often	occur	in	scripting	languages	
•  Encourage	reuse	of	other	programs	and	system	utilities	
where	possible	to	save	coding	effort	

•  Often	used	as	Web	CGI	scripts	

CSCI	4391	Cyber	Attacks	and	Defense		 16	



CSCI	4391	Cyber	Attacks	and	Defense		 17	



CSCI	4391	Cyber	Attacks	and	Defense		 18	



CSCI	4391	Cyber	Attacks	and	Defense		 19	



Cross Site Scripting (XSS) Attacks 
•  Attacks	where	input	provided	by	one	user	is	
subsequently	output	to	another	user	

•  Commonly	seen	in	scripted	Web	applications	
•  Vulnerability	involves	the	inclusion	of	script	code	in	the	HTML	
content	

•  Script	code	may	need	to	access	data	associated	with	other	
pages	

•  Browsers	impose	security	checks	and	restrict	data	access	to	
pages	originating	from	the	same	site	

•  Exploit	assumption	that	all	content	from	one	site	is	
equally	trusted	and	hence	is	permitted	to	interact	with	
other	content	from	the	site	

•  XSS	reflection	vulnerability	
•  Attacker	includes	the	malicious	script	content	in	data	
supplied	to	a	site	

CSCI	4391	Cyber	Attacks	and	Defense		 20	



CSCI	4391	Cyber	Attacks	and	Defense		 21	



Validating Input Syntax 
•  It	is	necessary	to	ensure	that	data	conform	with	
any	assumptions	made	about	the	data	before	
subsequent	use	

•  Input	data	should	be	compared	against	what	is	
wanted	

• Alternative	is	to	compare	the	input	data	with	
known	dangerous	values	

• By	only	accepting	known	safe	data	the	program	is	
more	likely	to	remain	secure	

CSCI	4391	Cyber	Attacks	and	Defense		 22	



Alternate Encodings 
• May	have	multiple	means	of	encoding	text	
•  Growing	requirement	to	support	users	around	the	
globe	and	to	interact	with	them	using	their	own	
languages	

•  Unicode	used	for	internationalization	
•  Uses	16-bit	value	for	characters	
•  UTF-8	encodes	as	1-4	byte	sequences	
•  Many	Unicode	decoders	accept	any	valid	equivalent	
sequence	

•  Canonicalization	
•  Transforming	input	data	into	a	single,	standard,	minimal	
representation	

•  Once	this	is	done	the	input	data	can	be	compared	with	a	
single	representation	of	acceptable	input	values	

CSCI	4391	Cyber	Attacks	and	Defense		 23	



Validating Numeric Input 
• Additional	concern	when	input	data	represents	
numeric	values	

•  Internally	stored	in	fixed	sized	value	
•  8,	16,	32,	64-bit	integers	
•  Floating	point	numbers	depend	on	the	processor	used	
•  Values	may	be	signed	or	unsigned	

• Must	correctly	interpret	text	form	and	process	
consistently	

•  Have	issues	comparing	signed	to	unsigned		
•  Could	be	used	to	thwart	buffer	overflow	check	

CSCI	4391	Cyber	Attacks	and	Defense		 24	



Input Fuzzing 

CSCI	4391	Cyber	Attacks	and	Defense		 25	

Developed	by	Professor	Barton	
Miller	at	the	University	of	
Wisconsin	Madison	in	1989	

Software	testing	technique	
that	uses	randomly	

generated	data	as	inputs	
to	a	program	

Range	of	inputs	is	very	
large	

Intent	is	to	determine	
if	the	program	or	
function	correctly	
handles	abnormal	

inputs	

Simple,	free	of	
assumptions,	cheap	

Assists	with	reliability	
as	well	as	security	

Can	also	use	templates	to	
generate	classes	of	known	

problem	inputs	

Disadvantage	is	that	
bugs	triggered	by	other	
forms	of	input	would	

be	missed	

Combination	of	
approaches	is	needed	

for	reasonably	
comprehensive	

coverage	of	the	inputs	



Writing Safe Program Code 
•  Second	component	is	processing	of	data	by	some	
algorithm	to	solve	required	problem	

• High-level	languages	are	typically	compiled	and	
linked	into	machine	code	which	is	then	directly	
executed	by	the	target	processor	

•  Security	issues:	
•  Correct	algorithm	implementation	
•  Correct	machine	instructions	for	algorithm	
•  Valid	manipulation	of	data	

CSCI	4391	Cyber	Attacks	and	Defense		 26	



Correct Algorithm Implementation 
•  Issue	of	good	program	development	technique	

•  Algorithm	may	not	correctly	handle	all	problem	variants	
•  Consequence	of	deficiency	is	a	bug	in	the	resulting	
program	that	could	be	exploited	

•  Initial	sequence	numbers	used	by	many	TCP/IP	
implementations	are	too	predictable	

•  Combination	of	the	sequence	number	as	an	identifier	
and	authenticator	of	packets	and	the	failure	to	make	
them	sufficiently	unpredictable	enables	the	attack	to	
occur	

CSCI	4391	Cyber	Attacks	and	Defense		 27	



Correct Algorithm Implementation (Cont.) 

• Another	variant	is	when	the	programmers	
deliberately	include	additional	code	in	a	program	
to	help	test	and	debug	it	

•  Often	code	remains	in	production	release	of	a	program	
and	could	inappropriately	release	information	

•  May	permit	a	user	to	bypass	security	checks	and	
perform	actions	they	would	not	otherwise	be	allowed	to	
perform	

•  This	vulnerability	was	exploited	by	the	Morris	Internet	
Worm	

CSCI	4391	Cyber	Attacks	and	Defense		 28	



Ensuring Machine Language Corresponds to 
Algorithm 

•  Issue	is	ignored	by	most	programmers	
•  Assumption	is	that	the	compiler	or	interpreter	
generates	or	executes	code	that	validly	implements	the	
language	statements	

• Requires	comparing	machine	code	with	original	
source	

•  Slow	and	difficult	
• Development	of	computer	systems	with	very	high	
assurance	level	is	the	one	area	where	this	level	of	
checking	is	required	

•  Specifically	Common	Criteria	assurance	level	of	EAL	7	

CSCI	4391	Cyber	Attacks	and	Defense		 29	



Correct Data Interpretation 
•  Data	stored	as	bits/bytes	
in	computer	

•  Grouped	as	words	or	
longwords	

•  Accessed	and	
manipulated	in	memory	
or	copied	into	processor	
registers	before	being	
used	

•  Interpretation	depends	on	
machine	instruction	
executed	

•  Different	languages	
provide	different	
capabilities	for	restricting	
and	validating	
interpretation	of	data	in	
variables	

•  Strongly	typed	languages	
are	more	limited,	safer	

•  Other	languages	allow	
more	liberal	
interpretation	of	data	and	
permit	program	code	to	
explicitly	change	their	
interpretation	

CSCI	4391	Cyber	Attacks	and	Defense		 30	



Correct Use of Memory 
•  Issue	of	dynamic	memory	allocation	

•  Unknown	amounts	of	data	
•  Allocated	when	needed,	released	when	done	
•  Used	to	manipulate	Memory	leak	
•  Steady	reduction	in	memory	available	on	the	heap	to	
the	point	where	it	is	completely	exhausted	

• Many	older	languages	have	no	explicit	support	for	
dynamic	memory	allocation	

•  Use	standard	library	routines	to	allocate	and	release	
memory	

• Modern	languages	handle	automatically	

CSCI	4391	Cyber	Attacks	and	Defense		 31	



Race Conditions 
• Without	synchronization	of	accesses	it	is	possible	
that	values	may	be	corrupted	or	changes	lost	due	
to	overlapping	access,	use,	and	replacement	of	
shared	values	

• Arise	when	writing	concurrent	code	whose	solution	
requires	the	correct	selection	and	use	of	
appropriate	synchronization	primitives	

• Deadlock	
•  Processes	or	threads	wait	on	a	resource	held	by	the	
other	

•  One	or	more	programs	has	to	be	terminated	

CSCI	4391	Cyber	Attacks	and	Defense		 32	



Operating System Interaction 
• Programs	execute	on	systems	under	the	control	of	
an	operating	system	

•  Mediates	and	shares	access	to	resources	
•  Constructs	execution	environment	
•  Includes	environment	variables	and	arguments	

•  Systems	have	a	concept	of	multiple	users	
•  Resources	are	owned	by	a	user	and	have	permissions	
granting	access	with	various	rights	to	different	
categories	of	users	

•  Programs	need	access	to	various	resources,	however	
excessive	levels	of	access	are	dangerous	

•  Concerns	when	multiple	programs	access	shared	
resources	such	as	a	common	file	

CSCI	4391	Cyber	Attacks	and	Defense		 33	



Environment Variables 
• Collection	of	string	values	inherited	by	each	
process	from	its	parent	

•  Can	affect	the	way	a	running	process	behaves	
•  Included	in	memory	when	it	is	constructed	

• Can	be	modified	by	the	program	process	at	any	
time	

•  Modifications	will	be	passed	to	its	children	
• Another	source	of	untrusted	program	input	
• Most	common	use	is	by	a	local	user	attempting	to	
gain	increased	privileges	

•  Goal	is	to	subvert	a	program	that	grants	superuser	or	
administrator	privileges	

CSCI	4391	Cyber	Attacks	and	Defense		 34	



CSCI	4391	Cyber	Attacks	and	Defense		 35	



Vulnerable Complied Programs 
• Programs	can	be	vulnerable	to	PATH	variable	
manipulation	

•  Must	reset	to	“safe”	values	

•  If	dynamically	linked	may	be	vulnerable	to	
manipulation	of	LD_LIBRARY_PATH	

•  Used	to	locate	suitable	dynamic	library	
•  Must	either	statically	link	privileged	programs	or	
prevent	use	of	this	variable	

CSCI	4391	Cyber	Attacks	and	Defense		 36	



Use of Least Privilege 
• Privilege	escalation	

•  Exploit	of	flaws	may	give	attacker	greater	privileges	

•  Least	privilege	
•  Run	programs	with	least	privilege	needed	to	complete	
their	function	

• Determine	appropriate	user	and	group	privileges	
required	

•  Decide	whether	to	grant	extra	user	or	just	group	
privileges	

•  Ensure	that	privileged	program	can	modify	only	
those	files	and	directories	necessary	

CSCI	4391	Cyber	Attacks	and	Defense		 37	



Root/Administrator Privileges 
•  Programs	with	root/	administrator	privileges	are	a	
major	target	of	attackers	

•  They	provide	highest	levels	of	system	access	and	control	
•  Are	needed	to	manage	access	to	protected	system	resources	

•  Often	privilege	is	only	needed	at	start	
•  Can	then	run	as	normal	user	

•  Good	design	partitions	complex	programs	in	smaller	
modules	with	needed	privileges	

•  Provides	a	greater	degree	of	isolation	between	the	
components	

•  Reduces	the	consequences	of	a	security	breach	in	one	
component	

•  Easier	to	test	and	verify	

CSCI	4391	Cyber	Attacks	and	Defense		 38	



System Calls and Standard Library Functions 

• Programs	use	system	calls	and	standard	library	
functions	for	common	operations	

• Programmers	make	assumptions	about	their	
operation	

•  If	incorrect	behavior	is	not	what	is	expected	
•  May	be	a	result	of	system	optimizing	access	to	shared	
resources	

•  Results	in	requests	for	services	being	buffered,	re-
sequenced,	or	otherwise	modified	to	optimize	system	
use	

•  Optimizations	can	conflict	with	program	goals	

CSCI	4391	Cyber	Attacks	and	Defense		 39	



CSCI	4391	Cyber	Attacks	and	Defense		 40	



Preventing Race Conditions 
• Programs	may	need	to	access	a	common	system	
resource	

• Need	suitable	synchronization	mechanisms	
•  	Most	common	technique	is	to	acquire	a	lock	on	the	
shared	file	

•  Lockfile	
•  Process	must	create	and	own	the	lockfile	in	order	to	
gain	access	to	the	shared	resource	

•  Concerns	
•  If	a	program	chooses	to	ignore	the	existence	of	the	lockfile	and	
access	the	shared	resource	the	system	will	not	prevent	this	

•  All	programs	using	this	form	of	synchronization	must	cooperate	
•  Implementation	

CSCI	4391	Cyber	Attacks	and	Defense		 41	



CSCI	4391	Cyber	Attacks	and	Defense		 42	



Safe Temporary Files 
• Many	programs	use	temporary	files	
• Often	in	common,	shared	system	area	
• Must	be	unique,	not	accessed	by	others	
• Commonly	create	name	using	process	ID	

•  Unique,	but	predictable	
•  Attacker	might	guess	and	attempt	to	create	own	file	
between	program	checking	and	creating	

•  Secure	temporary	file	creation	and	use	requires	the	
use	of	random	names	

CSCI	4391	Cyber	Attacks	and	Defense		 43	



CSCI	4391	Cyber	Attacks	and	Defense		 44	



Other Program Interaction 
•  Programs	may	use	functionality	and	services	of	other	
programs	

•  Security	vulnerabilities	can	result	unless	care	is	taken	with	this	
interaction	

•  Such	issues	are	of	particular	concern	when	the	program	being	
used	did	not	adequately	identify	all	the	security	concerns	that	
might	arise	

•  Occurs	with	the	current	trend	of	providing	Web	interfaces	to	
programs	

•  Burden	falls	on	the	newer	programs	to	identify	and	manage	
any	security	issues	that	may	arise	

•  Issue	of	data	confidentiality/integrity	
•  Detection	and	handling	of	exceptions	and	errors	generated	
by	interaction	is	also	important	from	a	security	perspective	

CSCI	4391	Cyber	Attacks	and	Defense		 45	



Handling Program Output 
•  Final	component	is	program	output	

•  May	be	stored	for	future	use,	sent	over	net,	displayed	
•  May	be	binary	or	text	

•  Important	from	a	program	security	perspective	
that	the	output	conform	to	the	expected	form	and	
interpretation	

• Programs	must	identify	what	is	permissible	output	
content	and	filter	any	possibly	untrusted	data	to	
ensure	that	only	valid	output	is	displayed	

• Character	set	should	be	specified	

CSCI	4391	Cyber	Attacks	and	Defense		 46	



Acknowledgement 
• Part	of	the	content	in	this	document	is	adopted	
from	the	recommended	textbook:		

Michael	Goodrich,	Roberto	Tamassia,	“Introduction	
to	Computer	Security”,	1st	Edition.	Pearson.	ISBN-13:	
978-0321512949,	ISBN-10:	9780321512949		

CSCI	4391	Cyber	Attacks	and	Defense		 47	


